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Final Scientific Report on
AFOSR Grant Number 81-0159

July 1, 1982 - Sept. 30. 1985

Optimal Control with Diminishing and Zero
Cost for Control

Principal Investigators: S.E. Shreve and V.J. Mizel

Research under this grant focussed on singular and bang-bang

stochastic control and singular deterministic control. In each

of the following sections, we briefly outline these pfroblems and

describe progress made on them. The resulting publications are

attached. The final section describes a book whose authorship

was partially supported by this grant.

* Section 1. Singular Stochastic Control

The first singular control models were those of spaceship

control treated by Chernoff [10] and Bather and Chernoff [5.6].

Bather and Chernoff [5] cast their spaceship control problem in

the following form:

S2

Minimize: E[ T df5 + I k x

0

Subject to: x= x + w - f + C 0 t < T.

In this formulation. {w t ; 0 < t < T} is a standard Brownian

motion, {t; 0 t T} is a nondecreasing control process

adapted to the filtration of the Brownian motion and satisfying
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E0 = 0, and (Ct ; 0 t T} is a nondecreasing adapted process

which causes {xt ; 0 t < T} to reflect at the origin, i.e.,

= - min [(x - + w A 0]"t O s~t)A0J ts . . ..

Such a singular control problem in which the state process is

.reflected at the origin will be called a Reflected Follower

Problem. Bather and Chernoff conjectured that the optimal

should be the minimal process which keeps the state trajectory ,

below a time-varying boundary f(t), i.e.,

= max [(x + w + C' - f(t)) V 0]; 0 < t < T.

One then would expect the value function for this problem to

* satisfy the Hamilton-Jacobi-Bellman equation

V (t,x) + I V x(t,x) = 0, 0 < x < f(t), 0 < t < T,

with boundary conditions

Reflection at origin: V x(t.0) = 0; 0 t < T

12Terminal cost: V(T,x) = kx x 0.

On the boundary {(t,x); x = f(t), 0 < t < T}, the marginal cost

of pushing should equal the marginal decrease in value, i.e..
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1
Boundary: V x(t'f(t)) = T-t 0 t T.

Setting R(t.x) = V x(t,x), Bather and Chernoff then derived the

conditions

1

Rt(t.x) + I Rx(tx) = 0; 0 < x f(t). 0 < t T,

R(tO) = 0; 0 t < T.

R(Tx) = kx; x 0.
1

R(t.x) = T- 0 t < T,

and recognized these as the free boundary conditions associated

with the problem of stopping a Brownian motion so as to minimize

the expected sum of (a) zero if the motion reaches the origin

before terminal time T and before it is stopped. (b) kx if the

motion does not reach the origin and is not stopped before

terminal time T, and arrives then at position x, (c) ifT-'"t

the motion is stopped at time t < T. They then used this

optimal stopping problem to provide bounds on the free boundary

f.

In their seminal 1980 paper [9], Benes, Shepp and

Witsenhausen posed two singular control problems. One of them

was the following Monotone Follower Problem:

Minimize: E (x + wt - )2ot t

where f and w are as in the previous problem. They found a
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boundary of the form f(t) = 5IT6 such that the optimal f is

the minimal process which keeps the state trajectory x + w t Et

below f(t), i.e.,

t= max [(x + w s - f(s)) V 0]; 0 < t T.
O<s<t

-They also noted that this boundary is of the same form as that

found by Miroshnichenko [21] to demarcate the stopping and

continuation regions for the problem

Minimize: E J(x + wt)dt,
~0

where the minimum is over stopping times T taking values in

[0.T]. Benes. et al.. also pointed out the connection with local

time; namely, the optimal [ is. except for a possible initial

jump, equal to the local time of the state process on the

boundary {(t,x); x = f(t), 0 t T}:

@t

t -f 0 + = lim 1 J [fs)_f()](x + W - E )ds.t~~~I 00l eJ fs-'~)

Motivated by these broad hints that some connection existed

between the optimal stopping and singular control, we used this

grant to support our investigation of this issue. In Karatzas

and Shreve [16]. we established by probabilistic means the
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following results. For the general Monoton Follower Problem

Minimize: E[ h(t dt + f(t)dt g(x)

[0,T]

Subejct to: x t = x + w t - ft; 0 < t < T,

where f is nondecreasing, the spatial derivative of the value

function is the optimal risk function for the stopping problem

Minimize: E[ h(t,x+wt)dt + f(o)l {T<T) + g'(x+wt)l{T=T}3.

0

N where the minimum is over all stopping times T lying in [O.T].

This result was proved under the assumptions that fgx and hx

are continuous. g and h are convex in x and grow at most

polynomially, and there exists an optimal process for the control

problem. Furthermore, the region of the state space in which no

control is exercised in the control problem (the optimal f is

constant) is the optimal continuation region in the stopping

problem. In particular, an optimal stopping time exists in the

stopping problem. It was also shown that if f(t) is positive

and bounded away from zero, h and g are nonnegative, and

sup g'(x) f(T), then an optimal process exists for the control
xEIR

problem.

In Karatzas and Shreve [20] we also established similar

results for a general Reflected Follower Problem. The principle
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new feature is that for these problems, the Brownian motion in

the associated stopping problem is absorbed at the origin, a fact

already observed by Bather and Chernoff [5].

One benefit of the established connection between singular

control and optimal stopping is that bounds on the continuation

region of the stopping problem, obtained by posing and solving

.more and less favorable problems, translate into bounds on the

region of inaction in the control problem. This comparison idea

goes back to Bather [4] and has been used by Bather and'Chernoff

[5], Chernoff [10], and Karatzas [17]. A second benefit of the

connection between these problems is that, because control

processes are more easily topologized than stopping times and are

thus more amenable to the continuity and compactness arguments

frequently used in existence proofs, it is feasible to prove the

existence of-optimal stopping times via the corresponding control

problem. Such a line of argument wa's used in [18], and it avoids

the heavy regularity assumptions usually required to prove the

existence of optimal stopping times. See, for example, Friedman

[12]. A third benefit flows in the other direction: from

stopping to control. Because optimal stopping is a mature

research area, as compared to singular control, there are a large

number of analytical and numerical methods which can be brought

via optimal stopping to bear on singular control. In particular,

the theory of numerical solution of Stefan problems becomes

available.

'A

A 1
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Section 2. Bang-Bang Stochastic Control

One of the first uses of Girsanov's formula to solve a

stochastic control problem is due to Benes [7]. This so-called

"predicted miss" problem is to minimize the distance of the final

state x(1) .IR d from a hyperplane subject to the system

eqaation

xt =x + ACs)Xsds + B(S)u(S.Xs)ds + C(s)dw s
0 0 0

where A. B and C are deterministic matrix functions of time.

w is a multi-dimensional Wiener process, and the control is

x d Dairn Cak[1
constrained by u: [0,1] x d - Davis and Clark [11]

subsequently showed how to reduce this multi-dimensional problem

to the one-dimensional problem:

Minimize: Ex (1)

Subject toI
x t = x + u(sxs)dS + w(t),

~0

Iu(t,xt) I 1,

where w is a one-dimensional Wiener process. This

*one-dimensional problem has been solved by different methods by

Benes [S], Ikeda and Watanabe [16]. Davis and Clark [11],

Haussman [13], Balakrishnan [1] and Shreve [24]. The obvious

.4
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control law u(t.xt) = -sgn(xt) is indeed the optimal one.

Shreve [24] computed the transition probabilities for the

controlled process

(2.1) x t = x sgn(x s  + w

using Girsanov's formula and local time in a way very similar to

the method we are about to describe for the asymmetric iquation

(2.2).

Benes, Shepp and Witsenhausen [9] solved the related

problem:
pP

'"J~o at 2 d
". Minimize: E etxdt,.: t .

9. Subject to:

x t x + u(s x )ds +

- < 0 u(S.X) < < .

They proved the existence of a number 6 such that an optimal

control law is given by

80  if x < 5.

-
) 1 if x t > 5.
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The resulting controlled process is governed by the equation

(2.2) x x + 8 )ds + wt

where

[ a: if x < 6,

8(x) = f[ ~
a I if x 6.

This is an asymmetric version of (2.1).

,* In the work supported by this grant, which appears in

Karatzas and Shreve [19]. we computed the transition density for

x t governed by (2.2) as follows. According -to Girsanov's

formula, the desired density is given by

(2.3) PX[x t E dy] = EX[C(t)l(wtEdy}],

where

iS
t 1

u 2C(t) = exp[{ JO(w u)dw u Oa( d]

Our computation thus requires knowledge of the joint distributiont t
of (w(t). O(Wu)dwU 02(wu)du).

0 0



Assuming for notational simp:c it, "

t

(2.4) J e2 (w )du = 61 r(t) + 6, :-,

J0

where

Ft

1~t = w >O) d

is the occupation time for the right half-line. A variation of

Tanaka's formula gives

pt

(2.5) e (w)dwu = (wt) - (WO) + (01 -B0 )L(t)'

where

P(z) = J0 (y)dy

and L(t) is the local time of w at the origin:

L(t) = lim 1 ds.
EO 4 0 s <

The local time appears because of the discontinuity of G at 6



0 0. Thus, our problem has been reduced to a computation of the

trivariate density P X[w t E da, L(t) E db, r(t) E dT] of

Brownian motion, its local time at the origin, and its occupation

time of the right half-line. Karatzas and Shreve [19] contains a

derivation via Laplace transforms and the Feynman-Kac formula for

elastic Brownian motion, and this paper also sketches a proof

based on a formula of D. Williams [25] involving inverse local

times.

Section 3. Singular Deterministic Control

This grant supported an investigation into the foundations

of the calculus of variations which led to the discovery that

even for regular one-dimensional control problems of Lagrange

type the optimal solutions ("minimizers") can exhibit several

remarkable features. For one thing, when the asymptotic behavior

of running cost of control is markedly different at certain

stat,:s from its behavior at others, then the optimal solution may

have infinite slope at certain times and can fail to satisfy the

integrated form of the Pontryagin minimum principle.

Particularly striking is the Lavrentiev phenomenon: under the

above circumstances, the optimal solution may be such that the

Jstandard methods for approximating optimal solutions of control

problems (penalty methods, finite element methods and the like)

will all converge not to the minimizer itself, but instead to a

higher cost "pseudominimizer". It follows that these methods

cannot in general detect singular minimizers, and will instead

lead to overly pessimistic cost estimates and suboptimal control

.4'
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policies (both of which are not subject to improvement with

increasing computational accuracy). This work is reported in

Ball and Mizel [2.3].

The generalization of the model studied to allow for a noise

term leads to a singular stochastic control problem of the type

discussed in Section 1. The Lavrentiev phenomenon takes the form

A. *of a gap between the best performance with a non-singular control

policy and the best performance with a singular control policy.

This work was the basis for Heinricher [14) and is succfnctly

%reported in Heinricher and Mizel [15].

This grant also supported Mizel and Trutzer [22.23] for work

on stochastic hereditary equations.

Section 4. Martingales. Brownian Motion and Stochastic

Differential Equations

During the work described in th'is proposal, we have found

the difficult and esoteric concept of Brownian local time to be

an indispensible tool in dealing with a number of stochastic

control problems. To make local time a bit less esoteric, we

have undertaken to write a book on its general nature motivated

by its applications to control. This book will present many of
A.,

* the problems discussed here, and, so as to be nearly

self-contained, it will also include a full treatment of Brownian

motion, stochastic integration with respect to continuous,

square-integrable martingales, and strong and weak solutions of

stochastic differential equations. It is our goal to make the

topics treated in this proposal accessible to the matheamtics,

" .
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engineering and economics communities.

Upon the expiration of this grant, the book was about half

completed. A table of contents for the entire book is provided.

.J

.r

/ ~it
A~. $'
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Research on: Optimal Control with Diminishing or Zero Cost of Control.

In studying the effect, in deterministic control problems, of
very marked dependence on system state, of the asymptotic growth
of cost of control, we are preparing the ground for application of
control to relatively sophisticated systems. In the long run we
hope to analyze control properties for multidimensional nonlinear

'systems such as those occurring in continuous elastic structures
'stressed to configurations near their yield points. It is well

known that such systems are subject to "fracture", and one outgrowth
of the present work may be an understanding of whether fracture can
arise in consequence of the minimizer for the energy integral, although
continuous, having a gradient which is infinite along a low dimensional
portion of the given structure. In the near term we expect to further
clarify the one dimensional case through the use of classical analysis
on spaces of absolutely continuous functions.

Our work with Professor John Ball seems to have been the first
to demonstrate regular problems with such anomalies as failure of

.J the minimizer to satisfy the integrated Euler-Lagrange and "energy"
equations (i.e., the maximum principle), as well as the existence
of a non zero gap between the actual minimum value of the cost
integral and the lower limit it assumes for continuous controls
("Lavrentiev phenomenon"). Other researchers are currently becoming

.-:" involved in related issues involving the limitations of classical
control and variational theories. The Lavrentiev phenomenon has
important implications for the numerical solution of control and
variational problems since numerical approximation inevitably
involves smooth admissible functions. An investigation is under
way to analyze the behavior of corresponding diffusion type stochastic
control problems (in which the cost of additional control has similar
asymptotic growth properties), in order to test whether the limit
of small noise perturbation will provide more easily treated
approximation methods for the deterministic problem.

The long range purpose of our work in stochastic control is
to expand the set of models which are well understood analytically.
Except for the linear-quadratic-Gaussian regulator and the models
presented by Bene , Shepp and Witsenhausen in 1980, there are very
few stochastic control problems which can be "solved" in any sense
other than numerically. We have attacked specific problems in
"bang-bang" and singular stochastic control; the former have arisen
in guidance and the latter in inventory and queue control. Our
work in bang-bang control uses the tools of Brownian local time
and path decomposition, both of which are now under active investi-
gation by probabilists. The singular control problems date back
to work by Chernoff in 1968, but are only now receiving widespread
attention.

In the next year we expect to learn more about local times
and path decompositions, and we also expect to solve other specific
control problems using these techniques. In contrast to singular
control, which now benefits from much activity, we are aware of no
other current work in the important and interesting area of bang-bang
control, so we expect our emphasis to switch somewhat in that direction.



Recent Developments in Deterministic and

Stochastic Optimal Control (AFOSR-82-0259)
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February 8, 1984

During the past year, our investigation of the influence, in

deterministic control problems, of varying the growth rate for

cost of control has led to two significant developments. First,

it has been demonstrated that even for regular one-dimensional

Lagrange type control problems (with polynomial integrand), under

growth conditions which ensure existence of a global absolutely

-continuous minimizer, one can have a global minimizer which fails

totally to satisfy the integrated form of the maximum principle!

More specifically, examples have been constructed of calculus of

variations problems in one real function whose global minimizer

satisfies neither the integrated form of the Euler-Lagrange

equations nor the integrated form of the DuBois-Reymond ("energy")

equation. These examples are apparently the first known uniformly

regular problems possessing absolutely continuous but non-Lipschitz

minimizers. The feature of the integrand which permits such an

anomaly is that, despite a uniformly quadratic lower growth in

the cost of control, the polynomial growth of cost of control is

affected in an essential way by the choice of state at which

control is applied.

Second, it was found that the long forgotten "Lavrentiev

phenomenon" (discussed in the recent book of Cesari) can readily

occur in such problems. That is, one can have a problem with a
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fion-Lipschitz minimizer such that Lipschitz functions cannot

simultaneously approximate the minimizer itself and the cost

incurred with this minimizer; the infimum of the costs attained

by Lipschitz trajectories can be strictly greater than the cost

achieved by the absolutely continuous minimizer! The implications

of this phenomenon for the numerical study of control problems are

profound--numerically generated costs are inevitably connected with

Lipschitz trajectories. Hence the numerical study of such control

problems will invariably lead to overly pessimistic conclusions

concerning their optimal cost unless techniques are consciously

followed to bypass the Lavrentiev phenomenon.

The objective of our work in stochastic control has been

to study problems in which control is exercised in a "bang-bang"

fashion, (i.e., it switches discontinuously as the state process

crosses a "switching surface"), or in which control is singular,

(i.e., it can be thought of as the limit of impulse controls as the

sizes of the impulse approaches a) while the duration approaches

zero). The former problems first arose in the context of rocket

guidance with the desired trajectory serving as a switching

surface; the latter problems appear in inventory control where

demand and supply processes provide impulses to the inventory

process. We have thus far succeeded in computing the statistics

of bang-bang controlled processes in some interesting one-dimensional

cases, and we believe the collateral discoveries we have made about

Brownian local time and path decompositions are of independent

interest. We have also shown how to reduce some fairly large

classes of singular control problems to much studied problems

in optimal stopping. We expect this reduction to result in

interplay between the two kinds of problems so as to enhance

understanding of both.
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